References and Notes

-
-
- (1) M. P. Nadler and R. F. Porter, *Inorg. Chem.*, 8, 599 (1969).
(2) M. A. Neiss and R. F. Porter, *J. Amer. Chem. Soc.*, 94, 1438 (1972).
(3) M. A. Neiss and R. F. Porter, *J. Phys. Chem.*, 76, 2630 (1972).
- **(4)** P. B. Ayscough and E. W. R. Steacie. *P~oc. Roy, Sac.. ,Ser. A,* **234,** 476 (1956)
- (5) (a) D. A. Whytock and K. O. Kutschke, *Proc. Roy. Soc.*, *Ser. A*, **306**, 503 (1968); (b) A. Gandini and K. O. Kutschke, *ibid.*, **306**, 511 (1968); (c) A. Gandini, D. A. Whytock, and K. O. Kutschke, *ibid.*, **306**, 5 537 (1968); (e) 4. Gandini, D. **A.** Whytock, and K. *0.* Kutschke, *ibrd.,* **306,** 541 (1968).
- (6) A. Gandini, D. **A.** Whytock, and K. 0. Kutschke, *Ber. Bimenpes. Phys. Chem.*, 72, 296 (1968).
- Chem., 72, 296 (1968).

(7) (a) A. M. Halpern and W. R. Ware, *J. Chem. Phys.*, **53**, 1969 (1970); (b) *ibid.*, **54**, 1271 (1971).
- (8) J. R. Platt, H. B. Klevens, and *G.* W. Schaeffer. *J. C'hm. Pi7,~s..* **15,** 598 (1947).
-
- (9) A. Kaldor, *J. Chem. Phys.*, **55**, 4641 (1971). (10) E. R. Bernstein and J. P. Reilly, *J. Chem. Phys.*, **57**, 3960 (1972).
- (1 1) M. Yanase, M. Koyanagi and Y. Kanda, *Mem. rue. Sci., Kjwshu Univ., Ser. C,* **8**, 35 (1972).
- (12) R. L. Strong, W. M. Howard. and R. L. Tinklepaugh, *Ber. Bunsenges. Phy.~. Chem.,* **72,** 200 (1968).
- (13) E. A. Lissi and E. B. **Abuin,** *Re\'. Lutinoumer. Qziim.,* **2,** 107 (1971).
- (14) L. F. Honstedt and D. T. Haworth. *J. Amer. Chem. Sor..* **82,** 89 (1960).
- (15) M. P. Nadler and R. F. Porter, *Inorg. Chem.*, 9, 904 (1970).
(16) P. A. Hackett and D. Phillips, *J. Phys. Chem.*, 78, 665 (1974).
-
- (17) E. G. Howard, P. B. Sargeant, and C. G. Krespan, *J. Amer. Chem. Soc.*, **89,** 1422 (1967).
- (18) S. W. Charles and E. Whittle, *Trans. Faraday Soc.*, **56**, 794 (1960).
(19) S. W. Charles, J. T. Pearson, and E. Whittle, *Trans. Faraday Soc.*, 57, 1356 (1961).
- (20) J. L. Holmes and K. 0. Kutschke. *Trans. Furudu)* Soc.. *58,* 333 (1962).

Contribution from Rocketdjne, a Division of Kockweli International, Canoga Park, California 91 304

The Hexafluorobromine(VII) Cation, BrF₆+. Infrared **Spectrum and Force Field**

Karl 0. Christe' and Richard D. Wilson

Received June 6, 1974 AIC403657

The syntheses of BrF_6+AsF_6 and $BrF_6+Sb_2F_{11}$ from BrF_5 and the corresponding KrFz.(Eewis acid) adducts have recently been reported by Gillespie and Schrobilgen.^{1,2} These BrF6⁺ salts were characterized by ¹⁹F nmr and Raman spectroscopy.² Since complete vibrational spectra and modified valence force fields are known for ClF₆+ 3 and IF₆+,4-6 similar information on BrF_6 ⁺ was desirable to obtain more quantitative data on the bonding in these unusual high oxidation state cations.

Experimental Section

Apparatus and Materials. The materials used in this work werc manipulated in a well-passivated (with C1F3 and BrF5) 304 stainless steel vacuum line equipped with Teflon FEP U traps and 316 stainless steel bellows-seal valves (Hoke, Inc., 4251 F4Y). Pressures were measured with a Heise Bourdon tube type gauge $(0-1500 \text{ mm} \pm$ 0.1%). Because of the rapid hydrolytic interaction with moisture. all materials were handled outsidc of the vacuum system in the dry nitrogen atmosphere of a glove box.

The infrared spectra were recorded on a Perkin-Elmer Model 457 spectrophotometer. The spectra of solids at room temperature were obtained by pressing two small single-crystal platelets of either AgCl or AgBr to a disk in a Wilks minipellet press. The powdered sample was placed between the platelets before starting the pressing operation. The low-temperature spectra were recorded at -196° using a cell and transfer technique similar to one previously described.7 The inner windows of the cell were AgC1; the outer ones, CsI disks. The instrument was calibrated by comparison with standard calibration points.8

The Raman spectra were recorded on a Cary Model 83 spectrophotometer using the $4880-\text{\AA}$ exciting line and a Claassen filter⁹ for the elimination of plasma lines. For low-temperature work a Miller Harney device¹⁰ was used. Passivated quartz, Teflon FEP, or Kel-F capillaries were used as sample tubes in the transverse-viewing, transverse-excitation technique.

Debye-Scherrer powder patterns werc taken using a GE Model XRD-6 diffractometer with copper K_{α} radiation and a nickel filter. Samples were sealed in quartz capillaries (\sim 0.5-mm o.d.).

The purification of BrFs and AsFs and the preparation of $BrFs2SbFs$ have previously been described.¹¹ Krypton difluoride was prepared from Kr (Matheson, 99.995%) and F2 using glow dischargc at -183°. Our method was similar to that¹² of Schreiner, *et al.*, except for the elimination of the gas circulation system. The KrF₂ was collected ai the end of a run in a tared Teflon FEP U trap maintained at -78° . The only detectable impurity in the KrF₂ was a small amount of N205 which could be removed by treatment of the crude KrF2 with BF₃ at -78 and -10° , which converted the N₂O₅ to nonvolatile $NO₂+BF₄–.13$ Pure KrF₂ was obtained by pumping off the volatile material and trapping the KrF₂ at -78° .

Preparation of BrF₆+ Salts. The BrF₆+AsF₆- salt was prepared by the method of Gillespie and Schrobilgen² using a KrF₂:AsF₂ mole ratio of 2:1 and a large excess of BrF5. Complete material balances were obtained for the experiments. The yields of BrF_6+AsF_6 were found to range from 5.3 to 7.0 mol *06* based on KrF2 and the correct amounts of Kr and F2 were evolved.

For the synthesis of the SbF₅ salt, weighed amounts of BrF₄⁺- Sb_2F_{11} - were dissolved in BrF₅, and KrF₂ was added at -196°. The mixture was kept at 25° until no further gas evolution was observed. Volatile materials were removed at room temperature. The Raman spectrum of the solid residue was identical with that previously reported.2 Sincc in a separate experiment we had demonstrated that $BrF_4+Sb_2F_{11}$ can be removed under a dynamic vacuum at 50^o, this residue was warmed to 50" for 1 week under a dynamic vacuum. Starting originally with 1.02 mmol of $BrF_4+Sb_2F_{11}$ and 7.63 mmol of KrF2, 23.2 rng of a white solid residue was obtained which according to its infrared and Raman spectra was mainly $BrF6+SbF6-xSbFs$ with x being less than I.

Results and Discussion

Synthesis and Properties. The synthesis data are in excellent agreement with the reports2 of Gillespie and Schrobilgen. The following observations deserve some comment. In the previous study² no material balances were obtained. In our study the yield of BrF6+AsF6- was found to be about 6 mol % based on the assumption that 1 mol of KrF2 could produce 1 mol of BrF_6^+ salt. In addition, it was established that BrF_6^+ - SbF_6 - $xSbF_5$ can be separated from BrF4+Sb₂F₁₁- by vacuum sublimation. However, the resulting product was not of sufficient quantity and purity to allow further characterization and to determine whether the anion was mainly SbF_6 or Sb_2F_{11} . When samples of BrF₆+ salts were placed in passivated quartz capillaries and flame sealed, Raman spectroscopy showed that at ambient temperature the BrF6+ salts attacked the quartz with formation of thc corresponding *02'* salts. Similarly, the $BrF6^+$ salts interacted at ambient temperature with AgCl. The attack of AgCl by BrF_6+AsF_6 was much faster than that by the corresponding SbFs salt and preempted the recording of BrF_6+AsF_6 infrared spectra at room temperature. In Teflon FEP containers the BrF6+ salts were stored at room temperature for prolonged periods without noticeable decomposition.

X-Ray Powder Data. The observed and calculated X-ray powder diffraction data for BrF_6+AsF_6 are listed in Table I. The pattern was corrected for lines¹⁴ due to $NO₂ + AsF₆$ resulting from the interaction¹³ between AsF₅ and some N_2O_5 which was present as an impurity in the KrF₂ starting material. The powder pattern of BrF_6+AsF_6 - very closely resembles that^{4,15} of $IF₆⁺ AsF₆⁻ indicating that the two compounds are$ isomorphous. By analogy with IF_6+AsF_6 , it was indexed in the face-centered cubic system with $a = 9.394$ Å. As expected, the unit cell of $BrF_6+AsF_6^-$ is slightly smaller than that of

Table I. X-Ray Powder Data for **BrF,+AsF,-**

d, A						
Obsd	Calcd	Intens	h	k	l	
4.69	4.69	VS		0	$\bf{0}$	
3.32	3.32	S			0	
2.712	2.712	ms	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \end{array}$		$\overline{\mathbf{c}}$	
2.509	2.511	W			$\mathbf{1}$	
2.102	2.100	m	4	2222 232 24	$\bf{0}$	
2.002	2.003	W	$\frac{3}{4}$		$\frac{2}{2}$	
1.916	1.918	ms				
1.661	1.661	m	4		0	
1.565	1.566	ms	$\overline{4}$	4	$\mathbf 2$	
			6	$\bf{0}$	$\mathbf 0$	
1.486	1.486	mw	6	$\frac{2}{2}$	0	
1.417	1.416	mw	6		$\overline{2}$	
1.356	1.356	W	4		4	
1.302	1.303	m	6		0	
			7		$\frac{1}{3}$ $\frac{2}{2}$	
1.278	1.279	vw	6 5			
1.256	1.255	m	6			
1.193	1.193	W	7	42354350		
1.174			6		$\mathbf{1}$ $\bf{0}$	
	1.174	W	8		0	
1.140	1.141	mw	$\begin{smallmatrix} 8 \ 6 \end{smallmatrix}$	$\frac{2}{4}$	4	
			8	$\overline{\mathbf{c}}$	\overline{c}	
1.107	1.107	mw	ί6	6	0	
1.077	1.078	W	6	6	\overline{c}	
1.051	1.050	W	8	4	0	
1.025	1.025	W	8	4	$\overline{\mathbf{c}}$	
			8	6	0	
0.940	0.939	W	li0	0	0	
0.922	0.921	W	10	2	0	

 IF_6+AsF_6 - (9.49 Å).^{4,15} This relatively small change in the unit cell dimensions is not surprising because the small radii of the +VI1 halogen ions allow them to occupy interstices in the fluoride packing. Assuming four molecules per unit cell and neglecting contributions to the volume from the highly charged central atoms, a plausible average volume^{16,17} of 17.27 \AA ³ per F and a calculated density of 3.068 g/cm³ are obtained.

Weaker lines were observed having mixed, even and odd Miller indices. These are not expected for a simple NaCl structure but can readily be explained^{4,15} by scattering from the fluorine atoms grouped around the Br and As atoms with these central atoms occupying the positions of Na and C1 in the NaCl lattice. By analogy with $IF_6+AsF_6-I^5$ the space group of BrF_6+AsF_6 is Pa3.

Vibrational Spectra. The infrared spectra of BrF_6+AsF_6 and of $BrF_6+SbF_6-xSbF_5$ after the removal of $BrF_4+Sp_2F_{11}$ are shown in Figure 1. The Raman spectra of BrF_6+AsF_6 and of the SbFs adduct before the removal of BrF4+Sb2F11were identical with those previously reported.2 The Raman spectrum of the SbF₅ adduct after the removal of BrF₄⁺- Sb_2F_{11} - had its most intense band at 660 cm⁻¹ (ν_1 of SbF6⁻) with two pronounced shoulders on its high-frequency side. In addition to weak bands attributable to Sb_2F_{11} stretching modes and to the SbF deformational modes in the 300-220 cm⁻¹ frequency range, the BrF₆+ deformation ν ₅(F_{2g}) was observed at 406 cm-1.

In addition to the three previously reported2 Raman-active modes, octahedral $BrF6^+$ is expected to exhibit two infrared-active fundamentals. These are the antisymmetric stretch, $\nu_3(F_{1u})$, and the antisymmetric deformation, $\nu_4(F_{1u})$. By comparison with the known frequencies of the closely related ClF₆⁺, IF₆⁺, SF₆, SeF₆, and TeF₆ species, ν ₃ and ν ₄ of BrF6+ are expected to occur between 760 and 800 and between 400 and 450 cm-1, respectively. Inspection of Figure 1 reveals that in both the AsFs and the SbFs adduct bands were observed at 775 and 430 cm-1. Furthermore, these bands disappeared when the BrF_6+AsF_6 ir sample was allowed to

^c Reference E_{\bullet}^+ min 4.5,525 0.19 59.07 F_{44} ಠ $.82$ $\begin{bmatrix} 6.63 & 0.93 & 0.63 \\ 0.46 & 0.46 & 0.46 \\ 0.46 & 0.498 & 0.490 \\ -0.03 & -0.03 & 0.08 \\ 0.08 & 0.08 & 0.08 \end{bmatrix}$ 0.08 g $_{0.03}$ $^{4.88}$ S 3
0.63 min Reference 19. ية
سا $= min$ F_{44} + 0.12 **8** 5.16
4.44 0.74 273; SF. ϵ 4.68 0.96 $746, 561, 817, 557, 475; \text{AsF}_6^{\cdot}$, 682, 568, 696, 385, 369; 3bF $_c^{\cdot}$, 653, 561, 667, 280, \mathcal{L} \bullet F_{44} =
min 5.06 0.11 0.19 95 5.44^e
 5.03^e 0.28^e 0.07 *4* **3** GVFF^d 5.07 0.09 0.40 $F_{44} = \frac{}{\textrm{min}}$ 0.13 4.98 0.65 त्रं $\frac{3.59^e}{4.86^e}$ **b**_{0.46}e 0.12 $\overline{\text{SeF}}_6$ 22 **2**
22 **2** 22
22 22 22 $GVFF^c$ 4.99 $\overline{0}$. 64 -0.25 F_{44} = min 5.55 02 6.70^e 161 0.77^e 0.35 SE_{6} $GVFF^b$ 5.28 PÓ. 0.02 89 $\left\vert {}\right\vert$ $\frac{1}{2}$ SbE_6 $\frac{5}{2}$ 0.21
 0.04 Ė F_{ad} ≋ 30 È 0.38 3.37
0.16 ۱sF
ا 521 ಠ F_{4} 6.23
3.52 0.63
4.39 0.45
0.03 $\sum_{i=1}^{n} a_i$ $\overline{\mathbf{m}}$ 0.83 <u>اؤن</u> αα ğ $\overline{1}$ ΤÊ \mathbf{H} Ħ \mathbf{H} ູ່ ŀ F_{2g} ë

Symmetry and Internal Force Constants (mdyn/A) of BrF₆⁺ Compared to Those of Related Octahedral Species⁴

l'able II.

706.9, 658.7, 778.5, 436, 405; TeF., 697.1, 670.3, 751, 326.5, 314; CIF.+, 679, 630, 890, 582, 513; BrF.+, 660, 670, 775, 430, 405; IF.+, 708, 732, 790, 343, 340.
Reference 20. "Using Raman frequencies from H. H. Claassen, a Frequencies (cm⁻¹) of v_1 - v_5 used for force field computations: SeF₆, 706.9, 658.7, 7
21. d Reference 20.

Figure 1. Infrared spectra of BrF₆⁺AsF₆⁻ recorded as a dry powder between AgCl plates at -196° and of BrF₆⁺SbF₆⁻ x SbF₅ recorded as a AgBr disk at **25** . The increase in background at the low-frequency end of the spectra **is** due to absorption by the windows.

warm to ambient temperature or when the ir sample of the SbF5 adduct was kept at ambient temperature for several hours. The remaining bands in the infrared spectra changed only little, thus supporting the assignment of the *775-* and 430-cm-1 bands to *v3* and *u4,* respectively, of the powerful oxidizing species $BrF6^+$. The ready interaction between $BrF6^+$ and the silver halide window material can also account for the weakening of the intensity of the BrF_6^+ infrared bands in the room-temperature spectrum of the SbFs adduct.

In BrF_6+AsF_6 , the 430-cm⁻¹ band shows a splitting of 6 $cm⁻¹$. Since the two components are of similar intensity, splitting due to the $^{79}Br^{81}Br$ isotopes must be considered. The following arguments augur against the splitting being caused by the bromine isotopes and favor its attribution to crystal field or site symmetry effects. (i) The SbF5 adduct does not show la comparable splitting. (ii) The observed splitting of *6* cm-1 is much larger than that $({\sim}2$ cm⁻¹) predicted for the Br isotopes. (iii) The $NO₂$ ⁺ deformation in the same spectrum shows a comparable splitting. (iv) The site symmetry of $BrF6^+$ in space group *Pa3* is only C3i.

Force Constants. Since both the infrared- and the Raman-active fundamentals are now known, it was interesting to compute a force field for BrF_6^+ . This allows a more quantitative comparison of the relative bond strength of BrF_6^+ with those of related species.

Except for the F_{1u} block, all the symmetry force constants of BrF₆⁺ are unique. The F_{1u} block is undetermined since only two frequency values are available for the determination of three force constants. Consequently, the usefulness of mathematical constraints, such as minimizing or maximizing the value of one of the symmetry force constants,¹⁸ was tested for the isoelectronic series SF_6 , SeF₆, and TeF₆, for which

general valence force fields have been reported.19-21 **As** can be seen from Table II, the condition $F_{44} =$ minimum very closely duplicates the GVFF values for the two heavier molecules SeF6 and TeF6. Therefore, it is also expected to be a very good approximation for the force field of BrF_6^+ . The values so obtained for BrF_6 ⁺ are listed in Table II and correlate well with the remaining species of Table II. The modified valence force fields, listed for the lightest isoelectronic series, *i.e.*, PF_6^- , SF_6 , and CIF_6^+ , are less reliable since the lighter central atoms cause stronger coupling of the stretching and bending modes.

The force constant of greatest interest is the stretching force constant fr. For BrF6⁺ its value of 4.9 mdyn/Å is the highest found to date for any BrF bond.²³⁻²⁵ This is not surprising since the covalency and therefore also the force constant of such a bond tend to increase with increasing oxidation state of the central atom and a formal positive charge.22 Since the $Br-F$ bonds in BrF_6 ⁺ are stronger than those in other bromine fluorides, the reactivity of these salts must be due to the high oxidizing power of BrF_6^+ .

gment. We are indebted to Drs. C. J. Schack and L. R. Grant for helpful discussions. This work was supported by the Office of Naval Research, Power Branch.

Regi§@ YO. BIF6'ASF6-, 51063-29-7; BrF6+SbF6-, 53432-26-1; PF6⁻, 16919-18-9; AsF6⁻, 16973-45-8; SbF6⁻, 17111-95-4; SF6, 2551-62-4; SeF6, 7783-79-1; TeFs, '7783-80-4; CIFs+, 38217-33-3; 1F6+, 21303-14-0; BrFs+, 51063-27-5.

References and Notes

- (1) R. J. Gillespie and G. J. Schrobilgen, *J. Chem. Soc.. Chem Commun.,* 90 (1974).
- (2) R. J. Gillespie and *G.* J. Schrobilgen, *Inorg. Chem..* **13,** 1230 (1974).
-
- (3) K. O. Christe, *Inorg. Chem.*, 12, 1580 (1973).

(3) K. O. Christe, *Inorg. Chem.*, 12, 1580 (1973).

(4) K. O. Christe and W. Sawodny, *Inorg. Chem.*, 6, 1783 (1967).

(5) K. O. Christe and W. Sawodny, *Inorg. Chem.*
-
-
- (7) K. R. Loos, V. A. Campanile, and C. T. Goetschel, *Spectrochim. Acta*, *Part A*, **26**, 365 (1970).
(8) E. K. Piyler, A. Danti, L. R. Blaine, and E. D. Tidwell, *J. Res. Nat. Bur. Stand.*, **64**, 841 (1960).
-
-
-
- (9) H. H. Claassen, H. Selig, and J. Shamir, *Appl. Spectrosc.*, 23, 8 (1969).
(10) F. A. Miller and B. M. Harney, *Appl. Spectrosc.*, 24, 291 (1970).
(11) K. O. Christe and W. Sawodny, *Inorg. Chem.*, 12, 2879 (1973).
(12 **87,** 25 (1965).
- (13) **A.** B. Ray, *Inorg. Chem..* **6,** 110 (1967).
-
- (14) D. Moy and **A.** R. Young, *J. Amer. Chem.* Soc., **87.** 1889 (1965). (15) S. P. Beaton, Ph.D. Thesis, University of British Columbia, 1966.
-
- (16) W, H. Zachariasen. *J. Amer. Chem. Soc..* **70,** 2147 (1948). (17) F. H. Ellinger and W. H. Zachariasen, *J. Phys. Chem.,* **58,** 405 (1954).
-
-
-
-
-
- (18) W. Sawodny, *J. Mol. Spectrosc.*, **30**, 56 (1969).

(19) A. Ruoff, *J. Mol. Struct.*, 4, 332 (1969).

(20) S. Abramowitz and I. W. Levin, *J. Chem. Phys.*, 44, 3353 (1966).

(21) S. Abramowitz and I. W. Levin, *J. Ch A,* **27,** 931 (1971).
- (25) K. *0.* Christe, E. C. Curtis, C. J. Schack. and D. Pilipovich, *Inorg, Chem.,* **11,** 1679 (1972).

Contribution from the Department of Chemistry, University of Houston, Houston, Texas 77004

Carbon-13 Nuclear Magnetic Resonance Studies of Borane Adducts of Trimethylamine

R. **A.** Geanangel

Received June 14, 1974 **AlC403859**

A recent study of ether-boron trihalide adducts by 13C nmr (cmr) has shown¹ that the chemical shifts of the α -carbon